• Ultra-Fast Current Limiter
  • Ultra-Fast Current Limiter
  • Ultra-Fast Current Limiter
  • Ultra-Fast Current Limiter
Ultra-Fast Current Limiter
discuss personally
Model
UFCL-40.5 loose equipment supply
UFCL-36 loose equipment supply
UFCL-24 loose equipment supply
UFCL-17.5 loose equipment supply
UFCL-12 loose equipment supply
UFCL-7.2 loose equipment supply
UFCL-40.5 switchgear
UFCL-36 switchgear
UFCL-24 switchgear
UFCL-17.5 switchgear
UFCL-12 switchgear
UFCL-7.2 switchgear
Basic info
Brand RW Energy
Model NO. UFCL -limiter
Rated voltage 40.5kV
Rated normal current 3150A
Rated frequency 50/60Hz
Mounting type Loose parts installation type
Power frequency withstand voltage 95kV/min
lightning impulse withstand voltage 185kV
Series UFCL Series
Product Detail

The UFCL-limiter, a fault current limiter based on pyrotechnic technology, is a technological answer to the problem of higher levels of short circuit current where system augmentation takes place but replacing of whole protection switchgear is not feasible.Faults in electrical power systems are inevitable. Apart from the damages in the vicinity of the fault - e.g. due to the effects of an electric arc - the fault currents flowing from the sources to the location of the fault impose high dynamical and thermal stresses on equipment like bus-bars, transformers, and switchgears. The circuit-breakers further have to be capable of (selectively) interrupting the currents associated.

But, a growth in the generation of electrical energy and an increased interconnection of the networks lead to higher fault currents. Especially, the continuous growth in the generation of electrical energy has the consequence that networks approach or even exceed their limits with respect to the short-circuit current withstand capability. Therefore, there is a considerable interest in devices which are capable of limiting fault currents. A fault current limiter can trip at the very early stage of first rise and limit the first peak of the fault current passing through it.

The use of UFCL-limiters allows equipment to remain in service even if the prospective fault current exceeds its rated peak and short-time withstand current and in case of circuit breakers also its rated short-circuit making and breaking current. Replacement of equipment can be avoided or at least shifted to a later date. In case of newly planned networks UFCL-limiters allow the use of equipment with lower ratings which renders possible considerable cost savings. In case of newly planned networks UFCL-limiters allow the use of equipment with lower ratings which renders possible considerable cost savings.

Sometimes, UFCL-limiter is the only solution

As shown in Figure 1 below, the UFCL-limiter is installed in the bus-tie section and is series-connected to the bus coupling circuit-breaker (CB). In the event of a short-circuit in the outgoing feeder, the prospective short-circuit current flowing through the outgoing feeder CB (Ik") may reach 80kArms, which is equivalent to a peak current of 200kAp. This exceeds the ratings of the CB (40kArms and 100kAp). In other words, the CB is unable to provide protection against this high peak short-circuit current and the operation speed of the CB is too slow. This will lead to serious mechanical and thermal stress and eventually equipment failure.

微信截图_20250710105240.png

However, thanks to the high operation speed and current limiting capabilities of the UFCL-limiter, it is possible to resolve this issue without upgrading all the equipment in the system. By installing the UFCL-limiter on the strategic position of the bus-tie, the short-circuit current i2 contributed by T2 is limited at the rise of the first cycle and interrupted before the prospective current i2 reaches its peak. The total (peak) short-circuit current flowing through the CB of the fault circuit is then kept below 100kAp (i1 + i2 <100 kAp), which is the rated peak withstand current of the CB. Therefore, the CB can withstand the fault current and trip to clear the fault safely.

In comparison with complex conventional solutions, the UFCL-limiter has both technical and economic advantages when used in transformer or generator feeders, in switchgear sectionalizing and connected in parallel with reactors. There is no need for customers to upgrade all the switchgear, bus-bars cables, etc.

The advantages of the use of a UFCL-limiter in a network are:

• Reduction of the short-circuit current of the system (compared to the short-circuit current with closed tie circuit breaker)

• Reduction of voltage sags and flicker due to the lower total source impedance

• Reduction of harmonics due to the lower total source impedance

• Higher system availability due to the parallel connection of the feeding generators and transformers

• Higher loads possible in a sub-system (higher than the ratings of the feeding generators and transformers in that sub-system)

UFCL-limiter switchgear


Rated   voltage

kV

7.2

12

17.5

24

36

40.5

Rated   current

A

1250-6300

1250-4000

1250-3150

Rated   frequency

Hz

50/60

Rated   power-frequency withstand voltage

kV

20

28

38

50

70

95

Rated   lightning impulse withstand voltage

kV

60

75

95

125

170

185

Rated   auxiliary voltage

V

AC220/230

Installation   type

Cabinet type


UFCL-limiter in loose equipment supply

Rated   voltage

kV

7.2

12

17.5

24

36

40.5

Rated   current

A

1250-6300

1250-4000

1250-3150

Rated   frequency

Hz

50/60

Rated   short-circuit breaking current

kA rms

Up to200

Rated   power-frequency withstand voltage

kV

20

28

38

50

70

95

Rated   lightning impulse withstand voltage

kV

60

75

95

125

170

185

Tripping   time

ms

<1

Total   operating time

ms

<10

Peak   current limiting ratio

%

15-50

Rated   auxiliary voltage

V

DC 110/220;AC110/220/230

Installation   type

Install in the form of loose parts


If you need to know about more parameters and application, Please check the model selection manual.↓↓↓ 

Know your supplier
RW Energy
Zhejiang Rockwell Energy Technology Co., Ltd. is an international enterprise specializing in the research, development and manufacturing of recloser controllers, power quality management, power monitoring systems and other high-end power equipment. In today's critical period of global energy transition and power system upgrading, the company has gathered a group of top talents in the fields of power engineering, automation control, software development, etc., who carry the enthusiasm and persistence for the power business, and are committed to overcoming the complex problems in the power system, and promoting the intelligent development of the power industry with innovative technology. Mission: To make global electricity smarter, more reliable and more efficient with innovative technology. Vision: To be the leader in global power intelligence.
Main Categories
High Voltage Electrical Apparatus/New energy/Tester
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$100000000
Professional Experience
12 years
Workplace
30000m²
占位
占位
Documents
Restricted.
Ultra-Fast Current Limiter Data sheet
White paper English
Consulting
Public.
Comprehensive Technical Comparison in the Fault Current Limiter Industry
Manual English
PDF
Related Products
Related Knowledges
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
I. Introduction to Cable Grounding Loop CurrentCables rated 110 kV and above use a single-core structure. The alternating magnetic field generated by the operating current induces a voltage on the metallic sheath. If the sheath forms a closed circuit through the earth, a grounding loop current will flow on the metallic sheath. Excessive grounding loop current (loop current exceeding 50 A, more than 20% of the load current, or a ratio of maximum-to-minimum phase current greater than 3) not only a
Felix Spark
09/03/2025
Considerations and Recommendations for Flame-Retardant Selection of High-Voltage Cables
Considerations and Recommendations for Flame-Retardant Selection of High-Voltage Cables
1.Flame-Retardant Cable Classification StandardsThe flame-retardant standard system is divided into two main categories. The first category follows the "Classification of Burning Behavior for Electric and Optical Fiber Cables" GB 31247. Cables complying with this standard system are widely used in densely populated areas such as high-speed railways and subways. This standard imposes strict requirements on parameters such as smoke density, heat release, and total smoke production, and cables typi
James
09/03/2025
Repair of high-voltage cable metallic sheaths
Repair of high-voltage cable metallic sheaths
I. Functions of Metallic Sheaths and Necessity of RepairThe metallic sheath of high-voltage cables is a metal shielding structure laid outside the insulation layer, including types such as lead sheaths, aluminum sheaths, and steel wire armor. Its core functions include mechanical protection (resisting external impact and compression), electrochemical corrosion protection (isolating moisture and soil pollutants), electromagnetic shielding (reducing electromagnetic interference to the environment)
Felix Spark
09/03/2025
What factors need to be considered when designing a transformer?
What factors need to be considered when designing a transformer?
Transformer design is a complex process that requires consideration of multiple factors to ensure safe and efficient operation. In addition, compliance with international and local regulations is essential to guarantee that transformers meet safety and performance standards. Below are key factors to consider in transformer design and the relevant regulations to follow:Transformer Design Factors: Voltage and Frequency: Determine the input and output voltage levels and the operating frequency. The
Vziman
09/02/2025
What failure modes are possible in a transformer? How to identify and fix these failures?
What failure modes are possible in a transformer? How to identify and fix these failures?
Transformers are critical components in power systems, and various failure modes can affect their operation. Timely identification and resolution of these failure modes are essential to prevent costly downtime and ensure system reliability. Below are some common transformer failure modes, along with methods to identify and address them: Insulation FailureIdentification: Insulation failure leads to decreased insulation resistance, which can be detected through insulation resistance testing (megge
Edwiin
09/02/2025
A hybrid DC circuit breaker
A hybrid DC circuit breaker
Most DC molded-case circuit breakers use natural air arc extinction, and there are typically two arc extinguishing methods: one is conventional opening and closing, where the contacts axially stretch the arc, while the conductive circuit generates a magnetic field that bends and elongates the arc, pulling it lengthwise perpendicular to the arc axis. This not only increases the arc length but also induces lateral motion, enabling air cooling to achieve arc extinction.The other method involves the
Echo
09/02/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!